Maximum-norm estimates for resolvents of elliptic finite element operators
نویسندگان
چکیده
منابع مشابه
Maximum-norm estimates for resolvents of elliptic finite element operators
Let Ω be a convex domain with smooth boundary in Rd. It has been shown recently that the semigroup generated by the discrete Laplacian for quasi-uniform families of piecewise linear finite element spaces on Ω is analytic with respect to the maximum-norm, uniformly in the mesh-width. This implies a resolvent estimate of standard form in the maximum-norm outside some sector in the right halfplane...
متن کاملMaximum-norm Resolvent Estimates for Elliptic Finite Element Operators on Nonquasiuniform Triangulations
In recent years several papers have been devoted to stability and smoothing properties in maximum-norm of finite element discretizations of parabolic problems. Using the theory of analytic semigroups it has been possible to rephrase such properties as bounds for the resolvent of the associated discrete elliptic operator. In all these cases the triangulations of the spatial domain has been assum...
متن کاملInterior Maximum-norm Estimates for Finite Element Methods, Part Ii
We consider bilinear forms A(-, •) connected with second-order elliptic problems and assume that for uh in a finite element space S¡,, we have A(u U),, x) = F(x) for x m Sh with local compact support. We give local estimates for u Uf, in L^ and W^ of the type "local best approximation plus weak outside influences plus the local size of F ".
متن کاملResolvent Estimates for Elliptic Finite Element Operators in One Dimension
We prove the analyticity (uniform in h ) of the semigroups generated on Lp(0, 1), 1 < p < oo , by finite element analogues Ah of a onedimensional second-order elliptic operator A under Dirichlet boundary conditions. This is accomplished by showing the appropriate estimates for the resolvents by means of energy arguments. The results are applied to prove stability and optimal-order error bounds ...
متن کاملMaximum Norm Estimates in the Finite Element Method
The finite element method is considered when applied to a model Dirichlet problem on a plane polygonal domain. Rate of convergence estimates in the maximum norm, up to the boundary, are given locally. The rate of convergence may vary from point to point and is shown to depend on the local smoothness of the solution and on a possible pollution effect. In one of the applications given, a method i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics of Computation
سال: 2002
ISSN: 0025-5718
DOI: 10.1090/s0025-5718-02-01488-6